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Abstract

This paper presents an exact solution for a simply-supported and laminated anisotropic cylindrical shell strip with

imperfect bonding at the off-axis elastic layer interfaces and with attached anisotropic piezoelectric actuator and sensor

subjected to transverse loading. In this research, the imperfect interface conditions are described in terms of linear

relations between the interface tractions in the normal and tangential directions, and the respective discontinuities in

displacements. The solution for an elastic (or piezoelectric) layer of the smart laminated cylindrical shell strip is ob-

tained in terms of the six-dimensional (or eight-dimensional) pseudo-Stroh formalism, solution for multilayered system

is then derived based on the transfer matrix method. Finally, a numerical example is presented to demonstrate the effect

of imperfect interface on the static response of the smart laminated cylindrical shell. The derived solutions can serve as

benchmark results to assess various approximate shell theories and numerical methods.
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1. Introduction

Smart/intelligent materials and structures refer to structures with surface-mounted or embedded sensors
and actuators. Laminated composites are well known for their high stiffness, strength and light-weight.

Consequently, they can be used as load bearing part of the smart system. On the other hand, due to the

direct piezoelectric effect and the inverse piezoelectric effect, piezoelectric materials can be employed as the

sensing and actuating part of the smart system. A laminated anisotropic cylindrical shell with mounted

anisotropic piezoelectric sensor and actuator is the focus of this research. Chen et al. (1997) considered a

similar problem in a previous paper, but their solution is confined to shells with orthotropic piezoelectric

and elastic layups. In this regard, this research can be considered as an extension of their results to the more

general anisotropic cases.
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In the mechanics of composite materials, it has been recognized that imperfect interfacial bonding has a

significant influence on the behavior of fibrous composites (Achenbach and Zhu, 1990; Zhong and Meguid,

1997; Wang and Meguid, 1999; Tong et al., 2001; Liu et al., 2001; Wang and Shen, 2002). The presence of

imperfectly bonded interfaces is also a common feature in many layered material systems such as delam-
ination in laminated composites (Liu et al., 1994; Cheng et al., 1996; Tullini et al., 1998; Librescu and

Schmidt, 2001) and slipping in asphalt pavements (Yue and Yin, 1998). Previous studies on the elastic

behaviors of laminated composite shells, however, usually adopt a perfect interface model in which both

displacements and tractions are continuous across each interface of dissimilar layers (Ren, 1987; Bhaskar

and Varadan, 1993; Chen et al., 1997). Recently, various approximate two-dimensional theories of lami-

nated composite shells have been proposed to incorporate the effect of damage due to the imperfect

bonding between the constituent laminae (see for example, Cheng and Kitipornchai, 1998; Schmidt and

Librescu, 1999; Librescu and Schmidt, 2001). There exist two restrictions in the theory of Cheng and
Kitipornchai (1998). One restriction is that only a small amount of interfacial weakness is allowed because

certain approximations have been made concerning displacement variation. The other one is that it is

impossible to study the case of separation delamination by their theory because of neglect of transverse

normal stress. The theory developed by Librescu and Schmidt (2001) concurrently incorporates the effects

of imperfectly bonded interfaces, the effects of transverse shear and transverse normal strain, the dynamic

effects, as well as the anisotropy of constituent material layers. Due to its general character, their theory can

contribute to a more reliable prediction in the linear range of the load carrying capacity and failure of

laminated composite shell structures featuring imperfectly bonded interfaces.
In this research, an exact three-dimensional electroelastic solution is obtained for cylindrical bending of

simply-supported, infinitely long, transversely loaded laminated anisotropic cylindrical shell strips with

imperfect bonding and with anisotropic piezoelectric layers acting as sensor and actuator. Here the im-

perfectly bonded interface formed by two adjacent elastic layers is modeled in terms of the linear springs. In

this model of an imperfectly bonded interface, tractions are continuous but displacements are disconti-

nuous across the interface. Furthermore, displacement jumps are proportional, in terms of the �spring-
factor-type� interface parameters, to their respective traction components. The solution for a homogeneous

elastic (or piezoelectric) cylindrical shell is obtained in terms of the six-dimensional (or eight-dimensional)
pseudo-Stroh formalism (Pan, 2001), solution for the smart multilayered cylindrical shell is derived based

on the transfer matrix method (Yue and Yin, 1998; Pan, 2001). In the solution of Bhaskar and Varadan

(1993) for an N -layered cylindrical shell, the 6N boundary and interface conditions yield a system of 6N
algebraic equations to determine the 6N unknown coefficients. Consequently, their method is not suitable

for addressing a cylindrical shell with very large number of layers (say, up to a hundred layers). This

problem also exists in the solution of Chen et al. (1997). In the transfer matrix method adopted in this

paper, however, the unknowns are the three displacements at the outer surface of the top piezoelectric

actuator of the smart laminated shell and the three displacements at the inner surface of the bottom pi-
ezoelectric sensor of the smart laminated shell. By solving a system of six simultaneous linear equations, the

six unknowns can be expressed in terms of the normal traction and electric potential applied on the outer

surface of the top piezoelectric actuator. Consequently, the transfer matrix method is appropriate to treat a

smart laminated shell with arbitrary number of layers.
2. Elastostatics of laminated shell

2.1. The boundary value problem

As illustrated in Fig. 1, the infinitely long and laminated shell panel considered here is composed of two
anisotropic piezoelectric layers as its top and bottom layers and N dissimilar anisotropic elastic layers which



Fig. 1. Geometry of the smart laminated shell cross-section.
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are imperfectly bonded. A cylindrical polar coordinate system ðr; h; zÞ is used, the jth (16 j6N þ 2) layer is
bonded by the inner surface r ¼ Rj�1 and the outer surface r ¼ Rj, and the layers are numbered sequentially

starting from the innermost layer. More specifically, each piezoelectric or elastic layer features cylindrical

orthotropy, with its orthotropy axes not necessarily coinciding with the h and z directions. The shell is in a

state of generalized plane strain, i.e., displacements, electric potential, stresses and electric displacements

are only functions of coordinates r and h. In addition, the top piezoelectric layer is used as an actuator,

while the bottom piezoelectric layer acts as a sensor. Two thin-film conducting electrodes are placed, re-

spectively, on the two surfaces of the actuator to carry an alternating forcing electric potential, while one

thin-film conducting electrode is placed on the outer surface of the sensor. For simplicity, the thickness of
the electrode is ignored. The layered solid is subjected to a normal traction qðhÞ and an electric potential

V ðhÞ, applied on the outer surface of the piezoelectric actuator, which can be assumed, without losing

generality, as
qðhÞ ¼ q0 sinðphÞ; V ðhÞ ¼ V1 sinðphÞ; p ¼ mp=hm; ð1Þ
where m is the number of the half-waves in the h direction, and hm is the angular span of the shell panel.

2.2. Governing equations for a single layer

The constitutive equations take the forms
rr

rh

rz

shz
Dr

266664
377775 ¼

C11 C12 C14 e11
C12 C22 C24 e12
C13 C23 C34 e13
C14 C24 C44 e14
e11 e12 e14 ��11

266664
377775

er
eh
chz
�Er

2664
3775;

srz
srh
Dh

Dz

2664
3775 ¼

C55 C56 e25
C56 C66 e26
e25 e26 ��22
e35 e36 ��23

2664
3775 crz

crh
�Eh

24 35; ð2Þ
where Cij, eij and �ij are the stiffness coefficients, piezoelectric coefficients and dielectric coefficients of the

layer under consideration; Dr, Dh and Dz are electric displacements; Er and Eh are electric fields. If the

considered layer is elastic, then eij ¼ 0. The dielectricity equation for an elastic layer, which is decoupled

from the elastostatics, is not of interest in this paper. As a result, the dielectric coefficients of the elastic layer

are trivial to the deformation of the smart shell. If one orthotropy axis of this layer coincides with the radial
axis, while another orthotropy axis of this layer is inclined at an angle a to the longitudinal axis, a being the
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positive clockwise, then Cij, eij, �ij can be expressed in terms of the angle a and eCCij, ~eeij, ~��ij in a cylindrical

coordinate system aligned with the material axes as follows
C11 ¼ eCC11; C12 ¼ cos2 aeCC12 þ sin2 aeCC13; C13 ¼ sin2 aeCC12 þ cos2 aeCC13; C14 ¼ sin a cos aðeCC12 � eCC13Þ;

C22 ¼ cos4 aeCC22 þ 2 sin2 a cos2 aðeCC23 þ 2eCC44Þ þ sin4 aeCC33;

C23 ¼ sin2 a cos2 aðeCC22 þ eCC33 � 4eCC44Þ þ ðsin4 aþ cos4 aÞeCC23;

C24 ¼ sin a cos3 aðeCC22 � eCC23 � 2eCC44Þ þ cos a sin3 aðeCC23 � eCC33 þ 2eCC44Þ;

C34 ¼ cos a sin3 aðeCC22 � eCC23 � 2eCC44Þ þ sin a cos3 aðeCC23 � eCC33 þ 2eCC44Þ;

C44 ¼ sin2 a cos2 aðeCC22 þ eCC33 � 2eCC23 � 2eCC44Þ þ ðcos4 aþ sin4 aÞeCC44;

C55 ¼ cos2 aeCC55 þ sin2 aeCC66; C56 ¼ sin a cos aðeCC66 � eCC55Þ; C66 ¼ sin2 aeCC55 þ cos2 aeCC66:

ð3aÞ

e11 ¼ ~ee11; e12 ¼ cos2 a~ee12 þ sin2 a~ee13; e13 ¼ sin2 a~ee12 þ cos2 a~ee13; e14 ¼ sin a cos að~ee12 � ~ee13Þ;
e25 ¼ e36 ¼ sin a cos að~ee26 � ~ee35Þ; e26 ¼ cos2 a~ee26 þ sin2 a~ee35; e35 ¼ cos2 a~ee35 þ sin2 a~ee26: ð3bÞ

�11 ¼ ~��11; �22 ¼ cos2 a~��22 þ sin2 a~��33;

�23 ¼ sin a cos að~��22 � ~��33Þ; �33 ¼ cos2 a~��33 þ sin2 a~��22:
ð3cÞ
The relations of strain–displacement and electric field–electric potential / in the cylindrical coordinate

system are
er ¼ ur;r; eh ¼ ðuh;h þ urÞ=r; chz ¼ uz;h=r;

crz ¼ uz;r; crh ¼ ður;h � uhÞ=r þ uh;r;

Er ¼ �/;r; Eh ¼ �/;h=r:

ð4Þ
The equations of equilibrium are
rr;r þ srh;h=r þ ðrr � rhÞ=r ¼ 0;

srh;r þ rh;h=r þ 2srh=r ¼ 0;

srz;r þ ðshz;h þ srzÞ=r ¼ 0;

Dr;r þ ðDh;h þ DrÞ=r ¼ 0:

ð5Þ
2.3. The boundary and continuity conditions

The boundary and continuity conditions to be satisfied are those at the longitudinal edges of the smart

laminated shell, as well as those on the lateral surfaces and different interfaces of the laminate. These

boundary and continuity conditions are specifically listed as follows

(I) Simply-supported edge boundary conditions for each layer
ur ¼ rh ¼ shz ¼ / ¼ 0 at h ¼ 0; hm for each layer: ð6Þ

(II) Boundary conditions on the outer surface of the piezoelectric actuator
rr ¼ q0 sinðphÞ; srz ¼ srh ¼ 0; / ¼ V1 sinðphÞ ðr ¼ RNþ2Þ: ð7Þ
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(III) Boundary conditions on the inner surface of the piezoelectric sensor
rr ¼ srz ¼ srh ¼ Dr ¼ 0 ðr ¼ R0Þ: ð8Þ

(IV) Linear model for imperfect bonding between two adjacent elastic layers

For imperfectly bonded interface models, the displacements at the interfaces may be discontinuous while

the tractions at layer interfaces are always continuous. The continuity of tractions at interfaces can be

expressed as
rrðRj; hÞ ¼ rrðR�
j ; hÞ ¼ rrðRþ

j ; hÞ;
srzðRj; hÞ ¼ srzðR�

j ; hÞ ¼ srzðRþ
j ; hÞ;

srhðRj; hÞ ¼ srhðR�
j ; hÞ ¼ srhðRþ

j ; hÞ;
j ¼ 2; 3; . . . ;N ; ð9Þ
where the superscripts ‘‘+’’ and ‘‘)’’ denote the limit values from the exterior and interior sides of the

interface r ¼ Rj. In this research, linear models (Achenbach and Zhu, 1990; Wang and Meguid, 1999; Liu

et al., 2001; Librescu and Schmidt, 2001) are adopted to represent the imperfectly bonded interface con-

ditions. In the linear models, the discontinuities in displacements at the interfaces are assumed to be

proportional, in terms of the �spring-factor-type� interface parameters, to their respective interface traction

components. More precisely,
rrðRj; hÞ ¼ Mj½urðRþ
j ; hÞ � urðR�

j ; hÞ�;
srzðRj; hÞ ¼ Pj½uzðRþ

j ; hÞ � uzðR�
j ; hÞ�;

srhðRj; hÞ ¼ Hj½uhðRþ
j ; hÞ � uhðR�

j ; hÞ�;
j ¼ 2; 3; . . . ;N ; ð10Þ
whereMj, Pj, Hj are three non-negative imperfect interface coefficients, and are the bonding stiffness tensor

of the interface r ¼ Rj as termed by Librescu and Schmidt (2001).

As Mj, Pj and Hj ! 1, the interface is perfectly bonded. At the other extreme end, Mj ¼ Pj ¼ Hj ¼ 0
represent complete debonding. When only Mj ! 1, while Pj and Hj remain finite, the interface is fric-

tionally bonded. When Mj ! 1, Pj ¼ Hj ¼ 0, the interface becomes a frictionless sliding interface or a

perfectly lubricated interface (Aboudi, 1987; Librescu and Schmidt, 2001).

(V) Boundary and continuity conditions on the sensor/substrate and actuator/substrate interfaces r ¼ R1

and r ¼ RNþ1
rrðR�
j ; hÞ ¼ rrðRþ

j ; hÞ; srzðR�
j ; hÞ ¼ srzðRþ

j ; hÞ; srhðR�
j ; hÞ ¼ srhðRþ

j ; hÞ;
urðR�

j ; hÞ ¼ urðRþ
j ; hÞ; uzðR�

j ; hÞ ¼ uzðRþ
j ; hÞ; uhðR�

j ; hÞ ¼ uhðRþ
j ; hÞ;

/ðRþ
j ; hÞ ¼ /ðR�

j ; hÞ ¼ 0:

j ¼ 1;N þ 1: ð11Þ
3. General solution for an elastic layer

Having in view that the dielectric properties and the elastic properties of the elastic layer are irrelevant to

each other, the dielectric moduli of the elastic layer have trivial contributions to the elastic deformation of

the elastic layer. In this section, only the solution for mechanical quantities, such as displacements and

stresses, is presented. In view of (6), the displacement vector can take the following forms
U ¼
ur
uh
uz

24 35 ¼ rs
a1 sinðphÞ
a2 cosðphÞ
a3 cosðphÞ

24 35: ð12Þ
Substitution of (12) into (4), and then into the constitutive relations (2) will yield the traction vector as

follows
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t ¼
rr

srh
srz

24 35 ¼ rs�1

b1 sinðphÞ
b2 cosðphÞ
b3 cosðphÞ

24 35: ð13Þ
Introducing two 3� 1 vectors a and b
a ¼ a1 a2 a3½ �T; b ¼ b1 b2 b3½ �T; ð14Þ
then we can find that the vector b is related to the vector a by
b ¼ ð�RT þ sTÞa ¼ � 1

s
ðQþ sRÞa; ð15Þ
where the superscript T denotes matrix transpose, and the three 3� 3 real matrices T, Q, R are defined by
T ¼ TT ¼
C11 0 0

0 C66 C56

0 C56 C55

264
375;

Q ¼ QT ¼
�ðC22 þ p2C66Þ pðC66 þ C22Þ pC24

pðC66 þ C22Þ �ðp2C22 þ C66Þ �p2C24

pC24 �p2C24 �p2C44

264
375;

R ¼
�C12 �pC66 �pC56

pC12 C66 C56

pC14 0 0

264
375:

ð16Þ
Meanwhile, the in-plane stresses rh, rz, shz can be expressed as
rh

rz

shz

24 35 ¼ qrs�1 sinðphÞ; ð17Þ
where
q ¼
C12sþ C22 �C22p �C24p
C13sþ C23 �C23p �C34p
C14sþ C24 �C24p �C44p

24 35 a1
a2
a3

24 35: ð18Þ
Now inserting (12) into (4), then into (2), and finally into the equations of equilibrium (5), one can arrive at
the following eigenrelations
½Qþ sðRþ R0Þ þ s2T�a ¼ 0; ð19Þ

where R0 ¼ �RT. Observing the fact that Rþ R0 is an antisymmetric matrix, we can deduce that if s is an
eigenvalue of (19), then �s is also an eigenvalue of the eigenequation (19). Eq. (19) can be recast into the

following standard eigenrelations
N
a

b

� �
¼ s

a

b

� �
; ð20Þ
where
N ¼ �T�1R0 T�1

�Qþ RT�1R0 �RT�1

� �
: ð21Þ
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Assume that the first three eigenvalues of (20) have positive real parts (or positive imaginary parts for

purely imaginary roots), the remaining three have opposite signs to the first three. Also we distinguish the

six eigenvectors of (20) by attaching a subscript to a and b. Then the general solution for the displacement

vector and the traction vector (of the r-dependent factor) can be concisely expressed as
U

rt

� �
¼ A1 A2

B1 B2

� �
hrsai K1

K2

� �
; ð22Þ
where K1 and K2 are two 3� 1 constant vectors to be determined, and
A1 ¼ a1 a2 a3½ �; A2 ¼ a4 a5 a6½ �;
B1 ¼ b1 b2 b3½ �; B2 ¼ b4 b5 b6½ �;
hrsai ¼ diag rs1 rs2 rs3 r�s1 r�s2 r�s3½ �:

ð23Þ
In this section, we have derived the general solution for a single elastic layer in terms of the six-dimensional

pseudo-Stroh formalism. Furthermore, the in-plane stresses (of the r-dependent factor) can be expressed in

terms of the displacement vector and the traction vector as
r
rh

rz

shz

24 35 ¼
E11 �pE11 �pE31 E14 0 0

E21 �pE21 E23 E24 0 0

E31 �pE31 E33 E34 0 0

24 35 U

rt

� �
; ð24Þ
where
E11 ¼ ðC11C22 � C2
12Þ=C11; E21 ¼ ðC11C23 � C12C13Þ=C11;

E31 ¼ ðC11C24 � C12C14Þ=C11; E23 ¼ pðC13C14 � C11C34Þ=C11;

E33 ¼ pðC2
14 � C11C44Þ=C11; E14 ¼ C12=C11;

E24 ¼ C13=C11; E34 ¼ C14=C11:

ð25Þ
4. General solution for a piezoelectric layer

In view of (6), the extended displacement vector can take the following form
eUU ¼ U

/

� �
¼

ur
uh
uz
/

2664
3775 ¼ rs

a1 sinðphÞ
a2 cosðphÞ
a3 cosðphÞ
a4 sinðphÞ

2664
3775: ð26Þ
Substitution of (26) into (4), and then into the constitutive relations (2) will yield the extended traction
vector as follows
~tt ¼ t
Dr

� �
¼

rr

srh
srz
Dr

2664
3775 ¼ rs�1

b1 sinðphÞ
b2 cosðphÞ
b3 cosðphÞ
b4 sinðphÞ

2664
3775: ð27Þ
Introducing two 4� 1 vectors ~aa and ~bb
~aa ¼ a1 a2 a3 a4½ �T; ~bb ¼ b1 b2 b3 b4½ �T; ð28Þ

then we can find that the vector ~bb is related to the vector ~aa by
~bb ¼ ð�eRRT þ seTTÞ~aa ¼ � 1

s
ð eQQ þ seRRÞ~aa; ð29Þ
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where the three 4� 4 real matrices eTT, eQQ, eRR are defined by
eTT ¼ eTTT ¼

C11 0 0 e11
0 C66 C56 0

0 C56 C55 0

e11 0 0 ��11

26664
37775;

eQQ ¼ eQQT ¼

�ðC22 þ p2C66Þ pðC66 þ C22Þ pC24 �p2e26
pðC66 þ C22Þ �ðp2C22 þ C66Þ �p2C24 pe26

pC24 �p2C24 �p2C44 0

�p2e26 pe26 0 p2�22

26664
37775;

eRR ¼

�C12 �pC66 �pC56 �e12
pC12 C66 C56 pe12
pC14 0 0 pe14
0 �pe26 �pe25 0

26664
37775:

ð30Þ
In addition, the in-plane stresses rh, rz, shz and in-plane electric displacements Dh, Dz can be expressed as
rh

rz

shz
Dh

Dz

266664
377775 ¼

q1 sinðphÞ
q2 sinðphÞ
q3 sinðphÞ
q4 cosðphÞ
q5 cosðphÞ

266664
377775rs�1; ð31Þ
where
q1
q2
q3
q4
q5

266664
377775 ¼

C12sþ C22 �C22p �C24p e12s
C13sþ C23 �C23p �C34p e13s
C14sþ C24 �C24p �C44p e14s

e26p e26ðs� 1Þ e25s ��22p
e36p e36ðs� 1Þ e35s ��23p

266664
377775

a1
a2
a3
a4

2664
3775: ð32Þ
Now inserting (26) into (4), then into (2), and finally into the equations of equilibrium (5), one can arrive at

the following eigenrelations
eQQh þ sðeRR þ eRR0Þ þ s2eTTi~aa ¼ 0; ð33Þ
where eRR 0 ¼ �eRRT. Observing the fact that eRR þ eRR0 is an antisymmetric matrix, we can deduce that if s is an
eigenvalue of (33), then �s is also an eigenvalue of the eigenequation (33). (33) can be recast into the

following standard eigenrelations
eNN ~aa
~bb

� �
¼ s

~aa
~bb

� �
; ð34Þ
where
eNN ¼ �eTT�1 eRR0 eTT�1

� eQQ þ eRReTT�1 eRR0 �eRReTT�1

� �
: ð35Þ
Assume that the first four eigenvalues of (34) have positive real parts (or positive imaginary parts for purely
imaginary roots), the remaining four have opposite signs to the first four. Also we distinguish the eight

eigenvectors of (34) by attaching a subscript to a and b. Then the general solution for the extended
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displacement vector and the extended traction vector (of the r-dependent factor) can be concisely expressed

as
eUU
r~tt

� �
¼

~AA1
~AA2eBB1
eBB2

� �
hrsbi

eKK1eKK2

� �
; ð36Þ
where eKK1 and eKK2 are two 4� 1 constant vectors to be determined, and
~AA1 ¼ ~aa1 ~aa2 ~aa3 ~aa4
� �

; ~AA2 ¼ ~aa5 ~aa6 ~aa7 ~aa8
� �

;eBB1 ¼ ~bb1 ~bb2 ~bb3 ~bb4
� �

; eBB2 ¼ ~bb5 ~bb6 ~bb7 ~bb8
� �

;

hrsbi ¼ diag rs1 rs2 rs3 rs4 r�s1 r�s2 r�s3 r�s4½ �:

ð37Þ
In this section, we have derived the general solution for a single piezoelectric layer in terms of the eight-

dimensional pseudo-Stroh formalism. Meanwhile, the in-plane stresses and in-plane electric displacements

(of the r-dependent factor) can be expressed in terms of the extended displacement and the extended

traction vectors as
r

rh

rz

shz
Dh

Dz

266664
377775 ¼

eEE11 �peEE11 �peEE31 0 eEE15 0 0 eEE18eEE21 �peEE21
eEE23 0 eEE25 0 0 eEE28eEE31 �peEE31
eEE33 0 eEE35 0 0 eEE38

0 0 0 eEE44 0 eEE46
eEE47 0

0 0 0 eEE54 0 eEE56
eEE57 0

266664
377775 eUU

r~tt

� �
; ð38Þ
where
eEE11 ¼ C22 �
C2

12�11 þ 2C12e11e12 � C11e212
D1

; ð39aÞ

eEE21 ¼ C23 �
C12C13�11 þ C12e11e13 þ C13e11e12 � C11e12e13

D1

; ð39bÞ

eEE31 ¼ C24 �
C12C14�11 þ C12e11e14 þ C14e11e12 � C11e12e14

D1

; ð39cÞ

eEE23 ¼ �C34p þ
pðC13C14�11 þ C14e11e13 þ C13e11e14 � C11e13e14Þ

D1

; ð39dÞ

eEE33 ¼ �pC44 þ
pðC2

14�11 þ 2C14e11e14 � C11e214Þ
D1

; ð39eÞ

eEE44 ¼ ��22p þ
pð2C56e25e26 � C55e26e26 � C66e25e25Þ

D2

; ð39fÞ

eEE54 ¼ ��23p þ
pðC56e26e35 þ C56e25e36 � C55e26e36 � C66e25e35Þ

D2

; ð39gÞ

eEE15 ¼
C12�11 þ e11e12

D1

; eEE25 ¼
C13�11 þ e11e13

D1

; eEE35 ¼
C14�11 þ e11e14

D1

; ð39hÞ
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eEE18 ¼
C12e11 � C11e12

D1

; eEE28 ¼
C13e11 � C11e13

D1

; eEE38 ¼
C14e11 � C11e14

D1

; ð39iÞ

eEE46 ¼
C55e26 � C56e25

D2

; eEE47 ¼
C66e25 � C56e26

D2

; ð39jÞ

eEE56 ¼
C55e36 � C56e35

D2

; eEE57 ¼
C66e35 � C56e36

D2

; ð39kÞ
where D1 ¼ C11�11 þ e211, D2 ¼ C55C66 � C2
56.
5. Transfer matrix and solution of layered system

5.1. Transfer matrix for the elastic layers

Due to the fact that the structure of the 6� 6 real matrix N introduced in (21) is identical to that of

the 10� 10 real matrix N used in Pan (2001), then the following orthogonal relationship can be similarly

derived
�BT
2 AT

2

BT
1 �AT

1

� �
A1 A2

B1 B2

� �
¼ I3�3 0

0 I3�3

� �
; ð40Þ
where I3�3 is a 3� 3 unit matrix.

For a certain homogeneous elastic layer k þ 1 with inner radius Rk ðk ¼ 1; 2; . . . ;NÞ, we have the fol-

lowing relation
K1

K2

� �
¼ h1=Rsa

k i
A1 A2

B1 B2

� ��1
U

Rkt

� �
Rþ
k

¼ h1=Rsa
k i

�BT
2 AT

2

BT
1 �AT

1

� �
U

Rkt

� �
Rþ
k

: ð41Þ
Then the solution at any position within this homogeneous layer is related to that at the inner radius Rk as

follows
U

rt

� �
¼ Pkðr=RkÞ

U

Rkt

� �
Rþ
k

ðk ¼ 1; 2; . . . ;NÞ; ð42Þ
where
Pkðr=RkÞ ¼
A1 A2

B1 B2

� �
hðr=RkÞsai �BT

2 AT
2

BT
1 �AT

1

� �
ð43Þ
is the field transfer matrix for the elastic layer. It is proved in the Appendix A that the field transfer matrix

can be directly determined from the real matrix N defined by (21), thus the calculation of the eigenvectors of

(20) can be circumvented. Furthermore, the linearly imperfect bonding interface model (10) can be

equivalently expressed as
U

Rkt

� �
Rþ
k

¼ Fk
U

Rkt

� �
R�
k

ðk ¼ 2; 3; . . . ;NÞ; ð44Þ
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where
Fk ¼

1 0 0 1=ðRkMkÞ 0 0

0 1 0 0 1=ðRkHkÞ 0

0 0 1 0 0 1=ðRkPkÞ
0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

26666664

37777775 ð45Þ
is the point transfer matrix. Consequently, the solution at the interface r ¼ R�
Nþ1 of the shell can be ex-

pressed by that at the interface r ¼ Rþ
1 of the shell as follows
U
RNþ1t

� �
R�
Nþ1

¼ X
U
R1t

� �
Rþ
1

; ð46Þ
where
X ¼ PN ðkN Þ � FN � PN�1ðkN�1Þ � FN�1 � � � � � P2ðk2Þ � F2 � P1ðk1Þ;
kk ¼ Rkþ1=Rk ð16 k6NÞ: ð47Þ
5.2. Transfer matrix for the piezoelectric layers

Due to the fact that the structure of the 8� 8 real matrix eNN introduced in (35) is identical to that of
the 10� 10 real matrix N used in Pan (2001), then the following orthogonal relationship can be similarly

derived
�eBBT
2

~AAT
2eBBT

1 �~AAT
1

" #
~AA1

~AA2eBB1
eBB2

� �
¼ I4�4 0

0 I4�4

� �
; ð48Þ
where I4�4 is a 4� 4 unit matrix.

For any piezoelectric layer k þ 1 with inner radius Rk ðk ¼ 0;N þ 1Þ, we have the following relation
eKK1eKK2

� �
¼ h1=Rsb

k i
~AA1

~AA2eBB1
eBB2

� ��1 eUU
Rk~tt

� �
Rþ
k

¼ h1=Rsb
k i

�eBBT
2

~AAT
2eBBT

1 �~AAT
1

" # eUU
Rk~tt

� �
Rþ
k

: ð49Þ
Then the solution at any position within this homogeneous layer is related to that at the inner radius Rk as

follows
 eUU
r~tt

� �
¼ ePPkðr=RkÞ

eUU
Rk~tt

� �
Rþ
k

ðk ¼ 0;N þ 1Þ; ð50Þ
where
ePPkðr=RkÞ ¼
~AA1

~AA2eBB1
eBB2

� �
hðr=RkÞsbi

�eBBT
2

~AAT
2eBBT

1 �~AAT
1

" #
ð51Þ
is the transfer matrix for the piezoelectric layer. It can also be similarly proved that the transfer matrix for

the piezoelectric layer can be directly determined from the real matrix eNN defined by (35), thus the calcu-

lation of the eigenvectors of (34) can be circumvented. Consequently, the solution at the outer surface of the
piezoelectric layer r ¼ R�

kþ1 can be expressed by that at the inner surface r ¼ Rþ
k of the piezoelectric layer as

follows
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eUU
Rkþ1

~tt

� �
R�
kþ1

¼ ePPkðkkÞ
eUU
Rk~tt

� �
Rþ
k

ðk ¼ 0;N þ 1Þ; ð52Þ
where kk ¼ Rkþ1=Rk (k ¼ 0;N þ 1). The above result (52) cannot be used directly due to the appearance of

the dielectric quantities / and Dr. To address this problem, ePP0ðk0Þ and ePPNþ1ðkNþ1Þ are rewritten into the
following partitioned forms
ePPNþ1ðkNþ1Þ ¼

Y11 Y12 Y13 Y14

Y21 Y22 Y23 Y24
Y31 Y32 Y33 Y34

Y41 Y42 Y43 Y44

2664
3775; ePP0ðk0Þ ¼

eYY11
eYY12

eYY13
eYY14eYY21

eYY22
eYY23

eYY24eYY31
eYY32

eYY33
eYY34eYY41

eYY42
eYY43

eYY44

2664
3775; ð53Þ
where Y11, Y13, Y31, Y33 are 3� 3 matrices; Y12, Y14, Y32, Y34 are 3� 1 matrices; Y21, Y23, Y41, Y43 are 1� 3

matrices; Y22, Y24, Y42, Y44 are scalars. Identical partitions hold for ePP0ðk0Þ.
In view of the fact that / ¼ 0 on r ¼ R1, RNþ1 and the fact that Dr ¼ 0 on r ¼ R0, / ¼ V1 sinðphÞ on

r ¼ RNþ2, then it follows from (52) that
RNþ1DrðRþ
Nþ1Þ ¼ �Y �1

24 Y21UðRþ
Nþ1Þ � Y �1

24 Y23RNþ1tðRþ
Nþ1Þ þ Y �1

24 V1;

/ðRþ
0 Þ ¼ �eYY �1

22
eYY21UðRþ

0 Þ � eYY �1
22

eYY23R0tðRþ
0 Þ:

ð54Þ
Making use of the above result, (52) can then be rewritten into
U
RNþ2t

� �
R�
Nþ2

¼ PNþ1ðkNþ1Þ
U

RNþ1t

� �
Rþ
Nþ1

þ V1
Y �1
24 Y14

Y �1
24 Y34

� �
; ð55Þ

U

R1t

� �
R�
1

¼ P0ðk0Þ
U

R0t

� �
Rþ
0

; ð56Þ
where
PNþ1ðkNþ1Þ ¼
Y11 � Y �1

24 Y14Y21 Y13 � Y �1
24 Y14Y23

Y31 � Y �1
24 Y34Y21 Y33 � Y �1

24 Y34Y23

" #
;

P0ðk0Þ ¼
eYY11 � eYY �1

22
eYY12

eYY21
eYY13 � eYY �1

22
eYY12

eYY23eYY31 � eYY �1
22

eYY32
eYY21

eYY33 � eYY �1
22

eYY32
eYY23

" #
:

ð57Þ
Consequently, the unknown dielectric quantities do not appear in Eqs. (55) and (56).

5.3. Solution of the smart laminated system

Applying Eqs. (11), (46), (55) and (56), we arrive at
U

RNþ2t

� �
R�
Nþ2

¼ PNþ1ðkNþ1Þ � X� P0ðk0Þ
U

R0t

� �
Rþ
0

þ V1
Y �1
24 Y14

Y �1
24 Y34

� �
: ð58Þ
Displacement vectors on the two surfaces r ¼ R0, RNþ2 are the unknowns in the above expression. In view of

(8), then (58) can be further reduced to
UðR�
Nþ2Þ

RNþ2tðR�
Nþ2Þ

� �
¼ Z1 Z2

Z3 Z4

� �
UðRþ

0 Þ
0

� �
þ V1

Y �1
24 Y14

Y �1
24 Y34

� �
; ð59Þ
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where
Z1 Z2

Z3 Z4

� �
¼ PNþ1ðkNþ1Þ � X� P0ðk0Þ: ð60Þ
By solving (59), the unknown displacement vectors on the two surfaces can be obtained as
UðRþ
0 Þ ¼ RNþ2Z

�1
3 tðR�

Nþ2Þ � VY �1
24 Z�1

3 Y34;

UðR�
Nþ2Þ ¼ RNþ2Z1Z

�1
3 tðR�

Nþ2Þ þ VY �1
24 ðY14 � Z1Z

�1
3 Y34Þ:

ð61Þ
The displacement vector and traction vector at any position within the (k þ 1)th (16 k6N ) elastic layer

of the laminated shell can then be expressed as
U

rt

� �
r

¼ Pkðr=RkÞ � Fk � Pk�1ðkk�1Þ � Fk�1 � � � � � � � � P2ðk2Þ � F2 � P1ðk1Þ � P0ðk0Þ
U

R0t

� �
Rþ
0

;

Rk < r < Rkþ1 ð16 k6NÞ: ð62Þ
The extended displacement vector and the extended traction vector at any position within the bottom

piezoelectric sensor of the laminated shell can then be expressed as
eUU
r~tt

� �
¼ ePP0ðr=R0Þ

I3�3 03�3

�eYY �1
22

eYY21 �eYY �1
22

eYY23

03�3 I3�3

01�3 01�3

2664
3775 U

rt

� �
Rþ
0

; R0 < r < R1: ð63Þ
The extended displacement vector and extended traction vector at any position within the top piezoelectric

actuator of the laminated shell can then be expressed as
eUU
r~tt

" #
¼ ePPNþ1ðr=RNþ1Þ

I3�3 03�3

01�3 01�3

03�3 I3�3

�Y �1
24 Y21 �Y �1

24 Y23

26664
37775

8>>><>>>: � X� P0ðk0Þ
U

R0t

� �
Rþ
0

þ
07�1

Y �1
24 V1

� �9>>>=>>>;;

RNþ1 < r < RNþ2: ð64Þ
Now that the above expressions for displacement vector and traction vector satisfy the governing equa-

tions, interfacial conditions and boundary conditions. With the displacement and traction vectors at a given

position within the elastic layers being determined, the in-plane stresses in these elastic layers can be

evaluated by using (24). With the extended displacement and traction vectors at a given position within the

two piezoelectric layers being determined, the in-plane stresses and in-plane electric displacements in the

two piezoelectric layers can be evaluated by using (38).
6. Numerical results

In the numerical example, the material of the top actuator and the bottom sensor is taken as the PZT-

5A. The symmetry axis of the piezoelectric PZT-5A is along the r-axis with the material properties being
listed as follows (Reddy and Cheng, 2001)
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respec
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C11 ¼ 86:856� 109 N=m2; C22 ¼ C33 ¼ 99:201� 109 N=m2; C23 ¼ 54:016� 109 N=m2;

C13 ¼ C12 ¼ 50:778� 109 N=m2; C44 ¼ 22:60� 109 N=m2; C55 ¼ C66 ¼ 21:1� 109 N=m2;

e11 ¼ 15:118 C=m2; e12 ¼ e13 ¼ �7:209 C=m2; e26 ¼ e35 ¼ 12:322 C=m2;

�11 ¼ 1:5� 10�8 N=m2; �22 ¼ �33 ¼ 1:53� 10�8 N=m2:
Since the top actuator and the bottom sensor are cylindrically isotropic, the material constants will remain

unchanged in the new coordinate system when undergoing a coordinate rotation about the radial direction.

The material properties of the graphite/epoxy composite are (Ren, 1987)
EL ¼ 172� 109 N=m2; ET ¼ 6:9� 109 N=m2;

GLT ¼ 3:4� 109 N=m2; GTT ¼ 1:4� 109N=m2; mLT ¼ mTT ¼ 0:25;
where L is the direction parallel to the fibers and T is the transverse direction. A three-layered (60�/)60�/60�)
graphite/epoxy substrate integrated with PZT-5A actuator and sensor is considered. The imperfect interface

parameters are taken to be (Dvorak and Zhang, 2001)
M2 ¼ M3 ¼ 108 N=m3; P2 ¼ P3 ¼ H2 ¼ H3 ¼ 109 N=m3:
The geometric and loading parameters are assumed to be
hm ¼ 1 rad; m ¼ 1:
The inner radius of the shell is taken to be unit, i.e., R0 ¼ 1 m, and the thickness of each piezoelectric or

elastic layer is 0.2 m. Figs. 2–7 illustrate the variations (the solid lines) of u�r ¼ ur= sinðphÞ, u�h ¼ uh= cosðphÞ,
u�z ¼ uz= cosðphÞ, r�

r ¼ rr= sinðphÞ, s�rh ¼ srh= cosðphÞ, s�rz ¼ srz= cosðphÞ, all of which are independent of the

angle h, along the radial direction when the smart cylindrical shell is only subjected to the electric loads

V1 ¼ 1 V and q0 ¼ 0. The corresponding results (the dashed lines) for perfect interfaces are also presented as

a comparison. It is observed that all the three displacement components undergo jumps when crossing the
Variation of u�r along the radial direction under electric loads (solid and dashed lines are for the imperfect and perfect interfaces,

tively).



Fig. 3. Variation of u�h along the radial direction under electric loads (solid and dashed lines are for the imperfect and perfect interfaces,

respectively).

Fig. 4. Variation of u�z along the radial direction under electric loads (solid and dashed lines are for the imperfect and perfect interfaces,

respectively).
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imperfect interfaces separating two elastic layers. Moreover, it has been checked that the jumps in

displacements and the corresponding traction components just satisfy the linear models described by Eq.

(10). It is observed from Fig. 2 that the physically unacceptable interpenetration phenomenon between



Fig. 5. Variation of r�
r along the radial direction under electric loads (solid and dashed lines are for the imperfect and perfect interfaces,

respectively).

Fig. 6. Variation of s�rh along the radial direction under electric loads (solid and dashed lines are for the imperfect and perfect interfaces,

respectively).
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neighboring constituents (Achenbach and Zhu, 1990) does not occur when the composite is subjected to

this kind of electric loads. Figs. 5–7 demonstrate that the presence of the imperfect interfaces can relax the



Fig. 8. Variation of /� in the sensor and actuator along the radial direction under electric loads (solid and dashed lines are for the

imperfect and perfect interfaces, respectively).

Fig. 7. Variation of s�rz along the radial direction under electric loads (solid and dashed lines are for the imperfect and perfect interfaces,

respectively).
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interlaminar stress level. The existence of imperfect interfaces is equivalent to relaxation of interfacial

bonding strength, and hence reduction in the overall rigidity of the shells. Figs. 2–7 confirms that the



Fig. 9. Variation of r�
r along the radial direction under mechanical loads (solid and dashed lines are for the imperfect and perfect

interfaces, respectively).

Fig. 10. Variation of s�rh along the radial direction under mechanical loads (solid and dashed lines are for the imperfect and perfect

interfaces, respectively).
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existence of imperfect interfaces will cause reductions in interface stresses but at the expense of increases of

the central deflection. Fig. 8 demonstrates the variations of /� ¼ /= sinðphÞ in the bottom sensor and top



Fig. 11. Variation of s�rz along the radial direction under mechanical loads (solid and dashed lines are for the imperfect and perfect

interfaces, respectively).
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actuator along the radial direction under the electric loads V1 ¼ 1 V and q0 ¼ 0. The magnitude of electric

potential in the sensor is very small; while the electric potential is nearly a linear function along the radial

direction. The interface imperfection has a minimal influence on electric potential. Figs. 9–11 present the

variations of r�
r , s

�
rh, s

�
rz along the radial direction when the smart laminated shell is under mechanical loads

q0 ¼ 1 N/m2 and V1 ¼ 0. It is observed from Figs. 9–11 that even though the existence of the imperfect

interfaces can significantly reduce the level of normal stress r�
r within each layer of the smart laminated

shell, the magnitudes of shear stresses s�rh and s�rz in the top actuator and in the adjacent elastic layer
for the case of imperfect interfaces are much higher than those for the case of perfect interfaces. Con-

sequently, delamination between the actuator and the layered substrate may occur when the interfaces

between two adjacent elastic layers are imperfect and when the smart laminated shell is subjected to

mechanical loads.
7. Conclusion

Based on the pseudo-Stroh formalism and the transfer matrix method, this paper presents a three-di-

mensional electroelastic solution for angle-ply cylindrical shells with imperfect bonding at the elastic layer

interfaces and with mounted anisotropic piezoelectric layers. The spring-like interface model is utilized here

to simulate the imperfectly bonded interfaces between two adjacent elastic layers. Compact and explicit

form expressions for all of the field quantities including the in-plane stresses and in-plane electric dis-

placements are given. During the formulation, we take rrr, rsrh, rsrz instead of rr, srh, srz as the stress

variables and rDr instead of Dr as the electric displacement variable to make the formulation simple and

elegant. This novel usage has also been employed by Tarn (2002a,b) in the analysis of cylindrically an-
isotropic elastic and piezoelectric body.



5920 X. Wang, Z. Zhong / International Journal of Solids and Structures 40 (2003) 5901–5921
Acknowledgements

The authors are greatly indebted to two referees for their very helpful comments and suggestions on

revising the manuscript. This research was supported by China Postdoctoral Science Foundation.
Appendix A

Defining
K ¼ diag s1 s2 s3 �s1 �s2 �s3½ �; ðA:1Þ
then the 6� 6 diagonal matrix hðr=RkÞsai can be uniquely expressed in terms of K0, K1, K2, K3, K4, K5 as

follows
hðr=RkÞsai ¼ v0Iþ v1Kþ v2K
2 þ v3K

3 þ v4K
4 þ v5K

5: ðA:2Þ
In view of (20) and (40), the following identities can be easily verified
A1 A2

B1 B2

� �
Km �BT

2 AT
2

BT
1 �AT

1

� �
¼ Nm; m ¼ 1–5: ðA:3Þ
It follows from (A.2) and (A.3) that
Pkðr=RkÞ ¼ v0Iþ v1Nþ v2N
2 þ v3N

3 þ v4N
4 þ v5N

5: ðA:4Þ
The above expression indicates that the field transfer matrix Pkðr=RkÞ can be determined from the real

matrix N, thus the calculation of eigenvectors of (20) can be circumvented.
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