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Abstract

This paper presents an exact solution for a simply-supported and laminated anisotropic cylindrical shell strip with
imperfect bonding at the off-axis elastic layer interfaces and with attached anisotropic piezoelectric actuator and sensor
subjected to transverse loading. In this research, the imperfect interface conditions are described in terms of linear
relations between the interface tractions in the normal and tangential directions, and the respective discontinuities in
displacements. The solution for an elastic (or piezoelectric) layer of the smart laminated cylindrical shell strip is ob-
tained in terms of the six-dimensional (or eight-dimensional) pseudo-Stroh formalism, solution for multilayered system
is then derived based on the transfer matrix method. Finally, a numerical example is presented to demonstrate the effect
of imperfect interface on the static response of the smart laminated cylindrical shell. The derived solutions can serve as
benchmark results to assess various approximate shell theories and numerical methods.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Smart/intelligent materials and structures refer to structures with surface-mounted or embedded sensors
and actuators. Laminated composites are well known for their high stiffness, strength and light-weight.
Consequently, they can be used as load bearing part of the smart system. On the other hand, due to the
direct piezoelectric effect and the inverse piezoelectric effect, piezoelectric materials can be employed as the
sensing and actuating part of the smart system. A laminated anisotropic cylindrical shell with mounted
anisotropic piezoelectric sensor and actuator is the focus of this research. Chen et al. (1997) considered a
similar problem in a previous paper, but their solution is confined to shells with orthotropic piezoelectric
and elastic layups. In this regard, this research can be considered as an extension of their results to the more
general anisotropic cases.
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In the mechanics of composite materials, it has been recognized that imperfect interfacial bonding has a
significant influence on the behavior of fibrous composites (Achenbach and Zhu, 1990; Zhong and Meguid,
1997; Wang and Meguid, 1999; Tong et al., 2001; Liu et al., 2001; Wang and Shen, 2002). The presence of
imperfectly bonded interfaces is also a common feature in many layered material systems such as delam-
ination in laminated composites (Liu et al., 1994; Cheng et al., 1996; Tullini et al., 1998; Librescu and
Schmidt, 2001) and slipping in asphalt pavements (Yue and Yin, 1998). Previous studies on the elastic
behaviors of laminated composite shells, however, usually adopt a perfect interface model in which both
displacements and tractions are continuous across each interface of dissimilar layers (Ren, 1987; Bhaskar
and Varadan, 1993; Chen et al., 1997). Recently, various approximate two-dimensional theories of lami-
nated composite shells have been proposed to incorporate the effect of damage due to the imperfect
bonding between the constituent laminae (see for example, Cheng and Kitipornchai, 1998; Schmidt and
Librescu, 1999; Librescu and Schmidt, 2001). There exist two restrictions in the theory of Cheng and
Kitipornchai (1998). One restriction is that only a small amount of interfacial weakness is allowed because
certain approximations have been made concerning displacement variation. The other one is that it is
impossible to study the case of separation delamination by their theory because of neglect of transverse
normal stress. The theory developed by Librescu and Schmidt (2001) concurrently incorporates the effects
of imperfectly bonded interfaces, the effects of transverse shear and transverse normal strain, the dynamic
effects, as well as the anisotropy of constituent material layers. Due to its general character, their theory can
contribute to a more reliable prediction in the linear range of the load carrying capacity and failure of
laminated composite shell structures featuring imperfectly bonded interfaces.

In this research, an exact three-dimensional electroelastic solution is obtained for cylindrical bending of
simply-supported, infinitely long, transversely loaded laminated anisotropic cylindrical shell strips with
imperfect bonding and with anisotropic piezoelectric layers acting as sensor and actuator. Here the im-
perfectly bonded interface formed by two adjacent elastic layers is modeled in terms of the linear springs. In
this model of an imperfectly bonded interface, tractions are continuous but displacements are disconti-
nuous across the interface. Furthermore, displacement jumps are proportional, in terms of the ‘spring-
factor-type’ interface parameters, to their respective traction components. The solution for a homogeneous
elastic (or piezoelectric) cylindrical shell is obtained in terms of the six-dimensional (or eight-dimensional)
pseudo-Stroh formalism (Pan, 2001), solution for the smart multilayered cylindrical shell is derived based
on the transfer matrix method (Yue and Yin, 1998; Pan, 2001). In the solution of Bhaskar and Varadan
(1993) for an N-layered cylindrical shell, the 6N boundary and interface conditions yield a system of 6N
algebraic equations to determine the 6V unknown coefficients. Consequently, their method is not suitable
for addressing a cylindrical shell with very large number of layers (say, up to a hundred layers). This
problem also exists in the solution of Chen et al. (1997). In the transfer matrix method adopted in this
paper, however, the unknowns are the three displacements at the outer surface of the top piezoelectric
actuator of the smart laminated shell and the three displacements at the inner surface of the bottom pi-
ezoelectric sensor of the smart laminated shell. By solving a system of six simultaneous linear equations, the
six unknowns can be expressed in terms of the normal traction and electric potential applied on the outer
surface of the top piezoelectric actuator. Consequently, the transfer matrix method is appropriate to treat a
smart laminated shell with arbitrary number of layers.

2. Elastostatics of laminated shell

2.1. The boundary value problem

As illustrated in Fig. 1, the infinitely long and laminated shell panel considered here is composed of two
anisotropic piezoelectric layers as its top and bottom layers and N dissimilar anisotropic elastic layers which
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Electrodes

Fig. 1. Geometry of the smart laminated shell cross-section.

are imperfectly bonded. A cylindrical polar coordinate system (r, 8, z) is used, the jth (1 <j< N + 2) layer is
bonded by the inner surface » = R;_; and the outer surface » = R, and the layers are numbered sequentially
starting from the innermost layer. More specifically, each piezoelectric or elastic layer features cylindrical
orthotropy, with its orthotropy axes not necessarily coinciding with the 0 and z directions. The shell is in a
state of generalized plane strain, i.e., displacements, electric potential, stresses and electric displacements
are only functions of coordinates » and 6. In addition, the top piezoelectric layer is used as an actuator,
while the bottom piezoelectric layer acts as a sensor. Two thin-film conducting electrodes are placed, re-
spectively, on the two surfaces of the actuator to carry an alternating forcing electric potential, while one
thin-film conducting electrode is placed on the outer surface of the sensor. For simplicity, the thickness of
the electrode is ignored. The layered solid is subjected to a normal traction ¢(6) and an electric potential
V(6), applied on the outer surface of the piezoelectric actuator, which can be assumed, without losing
generality, as

CI(H) =40 Sin(po)v V(O) =N Sil’l(_pO), p= mn/()mv (1)

where m is the number of the half-waves in the 0 direction, and 0,, is the angular span of the shell panel.

2.2. Governing equations for a single layer

The constitutive equations take the forms

Oy Chi Cpo Cu en C C
C C C ér Trz 55 56 €25 .
09 12 2 24 en C C Viz
—|c C C & T | _ 56 66 €26 . b
o | = 13 23 4 e ) D, | = Vo | s (2)
C C C Yoz 0 €5 € € _E
T0z 14 24 4 €14 E D 0
D —Ly z €35 €3 —€23
r €11 €12 ey €

where Cy;, e;; and ¢;; are the stiffness coefficients, piezoelectric coefficients and dielectric coefficients of the
layer under consideration; D,, Dy and D, are electric displacements; E, and E, are electric fields. If the
considered layer is elastic, then e;; = 0. The dielectricity equation for an elastic layer, which is decoupled
from the elastostatics, is not of interest in this paper. As a result, the dielectric coefficients of the elastic layer
are trivial to the deformation of the smart shell. If one orthotropy axis of this layer coincides with the radial
axis, while another orthotropy axis of this layer is inclined at an angle « to the longitudinal axis, o being the
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positive clockwise, then Cy;, e;;, €; can be expressed in terms of the angle o and 6,—,-, é;;, €; in a cylindrical
coordinate system aligned with the material axes as follows

Cii=Cn, Cp=cos’aCy+sin’aCiy, Cp3 =sin®aCyp +cos’aCy3, Ciy =sinocosa(Cp — Ci3),
Cyy = c0s* 0Cyy + 25in* acos® a(Cas + 2Cys) + sin® aCa,

Cy; = sin’ xcos’ u(@z + Cyy — 4644) + (sin4 o + cos? oc)523,

Cos = sinacos® a(Cyy — Caz — 2Cas) + cosasin® o Cys — Cs3 4 2Cas),

Cas = cos osin® a(Cary — Caz — 2Cas) + sinocos’ a(Cas — Cs3 4 2Cus),

Cys = sin’ acos’ a(Cy 4 C33 — 2Ca3 — 2Cas) + (cos® o0 + sin* o) Cu,

- -2 it . s s ) s s
Css = cos” aCss +sin” aCgs, Csg = sinacosa(Ces — Css), Ces = sin” aCss + cos” aCag.

(3a)
~ ~ L2 . L2 . ~ . ~ ~
e = en, e1p = COS2 oepp + sin” oey3, ez =S oepr + 0052 oers, €14 = SINn A CoS 06(612 — 813)7
. - - - L2 ~ .2 .
€5 = 35 = SIN0.COS Uy — E35), €6 = COS éag + SIN” 035, €35 = COS” 035 + Sin” o (3b)
~ 2~ L2~
€11 = €11, €7 = COS” al€xy + SIN™ 0esz, (3 )
C

€3 = sin o cos d(gzz — €33)7 €33 = COS2 O(€33 + Sin2 chzz.

The relations of strain—displacement and electric field—electric potential ¢ in the cylindrical coordinate
system are

& = Uy, & = (uﬁﬂ + ur)/rv Yo = leﬁ/l”,

Ve = Uzps Vg = (urﬁ - uH)/r + up, (4)

E, = _¢Ar7 Ey = _(ﬁf}/r'
The equations of equilibrium are

O-r«,r + Tr9,9/r + (Gr - 0'9)/7” = 07

Tro,r + O-(?‘H/r + 21',-9/7’ = 07

Trz,r + (T()z,() + Trz)/r = 07

D,{y, —+ (Dgg —+ Dr)/l" = 0

2.3. The boundary and continuity conditions

The boundary and continuity conditions to be satisfied are those at the longitudinal edges of the smart
laminated shell, as well as those on the lateral surfaces and different interfaces of the laminate. These
boundary and continuity conditions are specifically listed as follows

(I) Simply-supported edge boundary conditions for each layer

u,=06pg=1.=¢ =0 at 0=0,0, for each layer. (6)
(IT) Boundary conditions on the outer surface of the piezoelectric actuator

o, =qosin(pl), 1.=719=0, ¢ ="Vsin(pd) (r=Rys). (7)
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(III) Boundary conditions on the inner surface of the piezoelectric sensor
6,=1,=19=D,=0 (r=Ry). (8)

(IV) Linear model for imperfect bonding between two adjacent elastic layers

For imperfectly bonded interface models, the displacements at the interfaces may be discontinuous while
the tractions at layer interfaces are always continuous. The continuity of tractions at interfaces can be
expressed as

o,(R;,0) = 0,(R;,0) = 0,(R],0),

1=(R;, 0) = 1,-(R;,0) = 1=(R], 0), j=2,3,...,N, )

Tr()(Rja 0) = Tr()(Rj_v H) = TVO(R;—7 0))
where the superscripts “+”” and “—”" denote the limit values from the exterior and interior sides of the
interface » = R;. In this research, linear models (Achenbach and Zhu, 1990; Wang and Meguid, 1999; Liu
et al., 2001; Librescu and Schmidt, 2001) are adopted to represent the imperfectly bonded interface con-
ditions. In the linear models, the discontinuities in displacements at the interfaces are assumed to be
proportional, in terms of the ‘spring-factor-type’ interface parameters, to their respective interface traction
components. More precisely,

0:(R;, 0) = Mj[u.(R}, 0) — u.(R;, 0)],

TVZ<R]’H):Hj[uZ(Rj79)_uZ(Rj770)]7 j:273>"'5N> (10)

Tr‘U(Rh 0) = @j[uﬂ(Rfa 0) — u()(Rfv 0)],
where M}, I1;, ©; are three non-negative imperfect interface coefficients, and are the bonding stiffness tensor
of the interface » = R; as termed by Librescu and Schmidt (2001).

As M;, I1; and @; — oo, the interface is perfectly bonded. At the other extreme end, M; =11, = 0; =0
represent complete debonding. When only M; — oo, while II; and @; remain finite, the interface is fric-
tionally bonded. When M; — oo, II; = ©; = 0, the interface becomes a frictionless sliding interface or a
perfectly lubricated interface (Aboudi, 1987; Librescu and Schmidt, 2001).

(V) Boundary and continuity conditions on the sensor/substrate and actuator/substrate interfaces » = R,
and r = Ry
Gr(R;; 0) = O-r(R;»a 0)7 Trz(R;: 0) = Ti‘z(R;a 0)7 Tr(?(R_;a 0) = TrG(Rjy 0)7
ur(R/*,Q) :ur(R]LaQ)a uz(RT;Q) :uz(Rf,Q), UQ(R;,O) :ug(R;L,Q), ]: 1,N+ 1. (11)
$(RF,0) = $(R;,0) = 0.

3. General solution for an elastic layer

Having in view that the dielectric properties and the elastic properties of the elastic layer are irrelevant to
each other, the dielectric moduli of the elastic layer have trivial contributions to the elastic deformation of
the elastic layer. In this section, only the solution for mechanical quantities, such as displacements and
stresses, is presented. In view of (6), the displacement vector can take the following forms

u, a; sin(p0)
U= |uy| =7 |aycos(pl) |. (12)
u, az cos(ph)

Substitution of (12) into (4), and then into the constitutive relations (2) will yield the traction vector as
follows
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o, by sin(p0)
t= (19| = 7'Y71 bz COS(pH) . (13)
Tye b; cos(pb)
Introducing two 3 x 1 vectors a and b
a=[a @ 613]T7 b=1[b b b3]Ta (14)
then we can find that the vector b is related to the vector a by
1
b= (-R"+s5T)a=——(Q+sR)a, (15)
S
where the superscript T denotes matrix transpose, and the three 3 x 3 real matrices T, Q, R are defined by
Ch O 0
T=T'=| 0 Cs Cs|,
0 GCss Css
—(Cn +p*Ces)  p(Ces + C2) pCo
Q=Q" = | p(Ces+Cn) —(pP*Cn+Cs) —p*Cu |, (16)
pCoy —P2 Coy —P2 Cys

—Cp —pCss  —pCss
R = pC12 C66 C56
pC14 0 0
Meanwhile, the in-plane stresses oy, 0., T4, can be expressed as
a9
o. | = q " sin(ph), (17)

Toz
where

Cis+Cyn —Cpp —Cup| |a
q= | Cis3s+C3 —Cyup —Cyuyp||a]. (18)
Cus+Cy —Cup —Cup||as

Now inserting (12) into (4), then into (2), and finally into the equations of equilibrium (5), one can arrive at
the following eigenrelations

[Q +s(R+R') +s*Tja =0, (19)

where R’ = —R". Observing the fact that R + R’ is an antisymmetric matrix, we can deduce that if s is an
eigenvalue of (19), then —s is also an eigenvalue of the eigenequation (19). Eq. (19) can be recast into the
following standard eigenrelations

NB- :sm, (20)

-T 'R’ T
| -Q+RT'R" —RT! }
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Assume that the first three eigenvalues of (20) have positive real parts (or positive imaginary parts for
purely imaginary roots), the remaining three have opposite signs to the first three. Also we distinguish the
six eigenvectors of (20) by attaching a subscript to a and b. Then the general solution for the displacement
vector and the traction vector (of the r-dependent factor) can be concisely expressed as

HEEESEIH! s

where K; and K, are two 3 x 1 constant vectors to be determined, and

A :[31 a 33], A2:[34 as 36],
Bi=[by by bs], By=[bs bs bs], (23)
(r**y = diag[rit F2 p TS T s

In this section, we have derived the general solution for a single elastic layer in terms of the six-dimensional
pseudo-Stroh formalism. Furthermore, the in-plane stresses (of the r-dependent factor) can be expressed in
terms of the displacement vector and the traction vector as

(] Ey —pE; —pE3y Eu 0 0 U
r| o, = E21 7PE21 E23 E24 0 0 |:rt:| s (24)
Tp- Ey —pEy Eixn Ey 00
where

Ej = (C11Cn — CL)/Chiy,  Ez = (C11Cy — C12C13)/Cuy,
E3 = (C11Cy — C12Ci4)/Cri,  Exy = p(Ci3Ci4 — C11Ca4) /Chy,s

s (25)
E3; = p(Cy; — C11Cu)/Cr1,  Eiy = C12/Cyy,
Eyy = Ci3/Cii, Esy = Ci4/Cyy.
4. General solution for a piezoelectric layer
In view of (6), the extended displacement vector can take the following form
u, a; sin(p0)
~ |U| _ fu| | axcos(ph)
U= [QJ | T ascos(pl) | (26)
aq sin(p6)

Substitution of (26) into (4), and then into the constitutive relations (2) will yield the extended traction
vector as follows

a, by sin(p0)
s Lt el _ 1| bacos(ph)
= |:Dr:| Tl | T | bycos(po) | (27)
D, by sin(p0)
Introducing two 4 x 1 vectors a and b
{l = [al a) asz dau ]T7 B = [b] b2 b3 b4 ]T7 (28)

then we can find that the vector b is related to the vector a by

b= (—R" +sT)a = —%(6 +sR)a, (29)
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where the three 4 x 4 real matrices T, 6, R are defined by

Cn 0 0 €11
~T 0 Ce Css O

T=T" ,
0 Cs Css 0
€1 0 0 —€11
—(Cyn +p*Css)  p(Ces + C) pCu  —plex
6 _ QT _ p(Ces + Cn)  —(PPCn+ Css) —p*Cu pexs (30)
pCos —P2 Co —P2 Cy 0 ’
—p2€26 Peé 0 p2€22
—Cip —pCss —pCss  —enn
R - pCis Ces Css  pens
pCu 0 0 pes
0 —Pex  —pels 0
In addition, the in-plane stresses ay, 0., 7o, and in-plane electric displacements Dy, D, can be expressed as
i (o] q1 sm(p9)
0. ¢ sin(p0)
7. | = | g3sin(p0) |#7, (31)
Dy g4 cos(p0)
| D. g5 cos(p0)
where
Kz Cis + Cx —Cypp —Cup  eps a
9 Cias+Cys —Cup  —Cup  eps @
qs Cus+Cy  —Cup —Cup eus as | (32)
q4 €xp €26 (S - 1) €258 —€xnp a4
L 95 e3P 636(S - 1) €358 —€x3p

Now inserting (26) into (4), then into (2), and finally into the equations of equilibrium (5), one can arrive at
the following eigenrelations

[6 +s(R+R)+ szﬂ a=0, (33)
where R’ = —R”. Observing the fact that R + R’ isan antisymmetric matrix, we can deduce that if s is an
eigenvalue of (33), then —s is also an eigenvalue of the eigenequation (33). (33) can be recast into the

following standard eigenrelations

(- 3]
where
- [ _TRr T-!
N = JO S e ~ o~ . 35
|-Q+RT'R" —RT"' (35)

Assume that the first four eigenvalues of (34) have positive real parts (or positive imaginary parts for purely
imaginary roots), the remaining four have opposite signs to the first four. Also we distinguish the eight
eigenvectors of (34) by attaching a subscript to a and b. Then the general solution for the extended
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displacement vector and the extended traction vector (of the r-dependent factor) can be concisely expressed
as

S-15 sl )

where ﬁl and ﬁz are two 4 x 1 constant vectors to be determined, and
Al: [ﬁl flz 53 54], A2: [55 E: 1 i~l7 ﬁg],
ﬁl = [f’l f’z 53 l~)4]’ l~32 = [f)s l~)6 l~)7 f)g], (37)
() = diag[rt F2 pn o e s s

In this section, we have derived the general solution for a single piezoelectric layer in terms of the eight-
dimensional pseudo-Stroh formalism. Meanwhile, the in-plane stresses and in-plane electric displacements
(of the r-dependent factor) can be expressed in terms of the extended displacement and the extended
traction vectors as

09 Ell —PEU —£E31 0 EIS 0 0 EIS
0z E> —pEy  Ex 0 Exs 0 0 Ex|rg

"l T | = |Enxn —-pEyw  Eyxn 0 Eys 0 0 Esy [},{} (38)
Dy 0 0 0 Euw 0 Ei Ey O
D, 0 0 0 Esys, 0 Es Es; O

where
~ C? 2C — Cyé?
By = Cy— €+ 12;11812 11612, (39a)
1
Fy = Cos — Ci2Cizeng + C12€11€13j Cizerienn — Crieners ’ (39b)
1
Ey = Co — CinCusenr + C12€11€14A+ Cuerenn — C11€12614’ (39¢)
1
Fay = —Cuyp +p(C13C14€11 + C14€11€13A+ Cisenes — Criersens) 7 (39d)
1
~ C? 2C —Cyé?
By = —pC44+p< €1+ 1;1‘@116’14 11614)’ (39%)
1
Fas = —enp +p(2C56625826 - Cszlezéezé — Ceserses) ’ (39f)
2
Esi = —enp +p(C56€26635 + CssezseasA— Cssexsess — Coseasess) 7 (39g)
2
Eg=C2ntence g, _Chaitenen g Cun et (39h)
1 1 1
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~ C - C ~ C - C ~ C - C .
5= 12€11 y 116127 B — 13€11 y 11€13 . Eyg— 14€11 y 116147 (391)
1 1 1
Fu— Cssexs — Csgens Eo— Cssers — Csges (39i)
As ’ As ’
- C55636A* Csgess  Fe C66335; Csgess , (39K)
2 2

where Al = C11€11 —|—e%1, AQ = C55C66 — Cgé

5. Transfer matrix and solution of layered system
5.1. Transfer matrix for the elastic layers
Due to the fact that the structure of the 6 x 6 real matrix N introduced in (21) is identical to that of

the 10 x 10 real matrix N used in Pan (2001), then the following orthogonal relationship can be similarly
derived

-BI Al ]7A; A L. 0
S “
B, —A; ||B B 0 L
where I5.3 1s a 3 X 3 unit matrix.
For a certain homogeneous elastic layer &£ 4+ 1 with inner radius R, (k=1,2,...,N), we have the fol-
lowing relation
K, A AU -BI Al U
= (1/R}? = (1/R} 2 2 . 41
R3] e RIS e | P (41)

Then the solution at any position within this homogeneous layer is related to that at the inner radius R, as
follows

[ﬂ — P(r/Ry) L’gt]w (k=1,2,....N), 42)
where

A A B; A;] 43)

R N T &

is the field transfer matrix for the elastic layer. It is proved in the Appendix A that the field transfer matrix
can be directly determined from the real matrix N defined by (21), thus the calculation of the eigenvectors of
(20) can be circumvented. Furthermore, the linearly imperfect bonding interface model (10) can be
equivalently expressed as

U U
=F k=2,3,...,N), 44
[Rkt:|1ek> ¢ |:Rkt:|Rk ( ) ( )
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where
10 0 1/(RM) 0 0
010 0  1/RO) 0
oo 1 o0 0 1/(ReTy)
Fe=10 0 o0 1 0 0 (45)
000 0 1 0
000 0 0 1

is the point transfer matrix. Consequently, the solution at the interface » = R}, of the shell can be ex-
pressed by that at the interface » = R} of the shell as follows

U U
=Q 46
|:RN+lt:|RNH |:R1t]kl+’ (46)
where
Q= PN(;LN) X FN X PN,I(;LN,l) X FN—I X X Pz(/lz) X F2 X Pl(;tl),
M =Re /R (1<Kk<N). (47)

5.2. Transfer matrix for the piezoelectric layers

Due to the fact that the structure of the 8 x 8 real matrix N introduced in (35) is identical to that of
the 10 x 10 real matrix N used in Pan (2001), then the following orthogonal relationship can be similarly

derived
- E; Ag Al A2 _ I4><4 0
e , (48)

E'll“ —AlT Bl Bz I4><4

where 14,4 is a 4 x 4 unit matrix.
For any piezoelectric layer £ + 1 with inner radius R, (k = 0,N + 1), we have the following relation

£]-omll; 85, -om[¥ ]2,

2 Rki
Then the solution at any position within this homogeneous layer is related to that at the inner radius R, as
follows

o
Bl _Al

[fﬂ :ﬁk(r/Rk)[gf]R+ (k=0,N+1), (50)
where k
Pi(r/Ri) = [%i ‘éj ((r/R)™) _ﬁi? ‘% (51)

is the transfer matrix for the piezoelectric layer. It can also be similarly proved that the transfer matrix for
the piezoelectric layer can be directly determined from the real matrix N defined by (35), thus the calcu-
lation of the eigenvectors of (34) can be circumvented. Consequently, the solution at the outer surface of the
piezoelectric layer » = R, | can be expressed by that at the inner surface » = R of the piezoelectric layer as
follows
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i
Ryt

where 2, = Riy1/Ry (k= 0,N + 1). The above result (52) cannot be used directly due to the appearance of
the dielectric quantities ¢ and D,. To address this problem, P(4o) and Py (Ay.1) are rewritten into the
following partitioned forms

— P(y) {R‘H Ck=0N ), (52)

R

Yi Yo Y3 Yy \:(11 ‘:(12 1(13 5214
5 Yo Y Y Yy 5 Y Y» Y Y,
P ;L — P ;L — X121 L22 X123 24 53
vt (Ae) Y Y Y Ya|’ o) Yy Y Y Yul 3)
Yy Yo Y Yy Yo Yoo Yz Yu

where Y11, Y13, Y31, Y33 are 3 x 3 matrices; Y12, Yi4, Y32, Yaq are 3 x 1 matrices; Yai, Yas, Yar, Ya3 are 1 x 3
matrices; Yay, Yo, Yap, Yas are scalars. Identical partitions hold for Pg(/).

In view of the fact that ¢ =0 on r = Ry, Ry, and the fact that D, =0 on » = Ry, ¢ = V; sin(pf) on
r = Ry, then it follows from (52) that

RyiDy(Ry ) = = Yo' Yo U(RY ) = Yo' YosRy 1 t(Ry, ) + Yo' A,

e T (54)
P(Ry) = = Y5, Yo U(R)) — Yo' YosRot(Ry).
Making use of the above result, (52) can then be rewritten into
U U Y_1Y14:|
=Py (2 + 1| A , 55
[RNHJRN” el NH){RNHJR;H 1{Y24t1Y34 (53)
U } U
= Py(4) [ } , (56)
[th s Rot R;
where
, Yiu— Y 'YuYy Yis— Y'Y Yo
Pyii(Ans1) = 2 O )
Y3 — Y, YuYy Y3 — 1, YuYny (57)
‘711 - ?{21‘?12?21 §13 - 17251?12?23
P()()L,O) - ~ ~_1~ ~ ~ ~_1~ ~ .
Y3 — Y, YnYy Y —Y,  Y¥iYy
Consequently, the unknown dielectric quantities do not appear in Egs. (55) and (56).
5.3. Solution of the smart laminated system
Applying Egs. (11), (46), (55) and (56), we arrive at
U U Y'Y
=Py 1(Avy1) X Q x Py(Z + |2 14} 58
[RJ ) X 2 x Po(ia) [RotLg JHN (58)

Displacement vectors on the two surfaces » = Ry, Ry, are the unknowns in the above expression. In view of
(8), then (58) can be further reduced to

Pt R | s R (59)



X. Wang, Z. Zhong | International Journal of Solids and Structures 40 (2003) 5901-5921 5913

where

7, Z
|:Z'1; Zj:| = PN+1<}~N+1) X Q x Po(},()). (60)

By solving (59), the unknown displacement vectors on the two surfaces can be obtained as

U(R§) = Ry2Z3 ' t(Ry ) — VYo' 25 Y,

B o ~ B (61)
U(Ry.,) = Ryi2ZiZ3't(Ry ) + VYo' (Yis — Z4Z; ' Yy).

The displacement vector and traction vector at any position within the (k + 1)th (1 <k < N) elastic layer
of the laminated shell can then be expressed as

U U

|: :| :Pk(r/Rk) XFkXPkfl(;“kfl) Xkal Xoeweeen XP2(}v2) XFzXPl(;Ll) XPO(;\.O)[ :| s

rt , R()t Rg
Rk<l"<Rk+] (1<k<N) (62)

The extended displacement vector and the extended traction vector at any position within the bottom
piezoelectric sensor of the laminated shell can then be expressed as

_ ~I3X13~ ~03T3~
U 5 —Y, Yy Y, Y U
~ | =Py(r/R 2 22 , Ry <r<Ry. 63
LJ o(/Ro) 0.5 L.s |:rt}R0 o <7\ 1 (63)
01><3 01><3

The extended displacement vector and extended traction vector at any position within the top piezoelectric
actuator of the laminated shell can then be expressed as

I3><3 03><3
fj = 01><3 01><3 |: U :| |: O7><1 ]
=P R x Q x Py(4 + )
[rt v1(r/Ry 1) 055 Iy 0(%0) Rot - YzilVl
—Y Yo =YY
RN+] <r< RN+2- (64)

Now that the above expressions for displacement vector and traction vector satisfy the governing equa-
tions, interfacial conditions and boundary conditions. With the displacement and traction vectors at a given
position within the elastic layers being determined, the in-plane stresses in these elastic layers can be
evaluated by using (24). With the extended displacement and traction vectors at a given position within the
two piezoelectric layers being determined, the in-plane stresses and in-plane electric displacements in the
two piezoelectric layers can be evaluated by using (38).

6. Numerical results

In the numerical example, the material of the top actuator and the bottom sensor is taken as the PZT-
5A. The symmetry axis of the piezoelectric PZT-5A is along the r-axis with the material properties being
listed as follows (Reddy and Cheng, 2001)
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C)1 = 86.856 x 10° N/m?, Cy = C33 = 99.201 x 10° N/m?, Cp = 54.016 x 10° N/m?,
Ci3 = Cpp = 50.778 x 10° N/m?, Cyy = 22.60 x 10° N/m?, Css = Ces = 21.1 x 10° N/m?,
e;] = 15.118 C/m?, ey = e;3 = —7.209 C/m?, ey = e35 = 12.322 C/m?,

a1 =1.5x 107 N/m?, e = e33 = 1.53 x 1078 N/m?.

Since the top actuator and the bottom sensor are cylindrically isotropic, the material constants will remain
unchanged in the new coordinate system when undergoing a coordinate rotation about the radial direction.

The material properties of the graphite/epoxy composite are (Ren, 1987)
E, =172 x 10° N/m?, E;r = 6.9 x 10° N/m?,
Gir =34 x10° N/m?, Gy = 1.4 x 10°N/m?, v,7 = vyy = 0.25,
where L is the direction parallel to the fibers and 7 is the transverse direction. A three-layered (60°/—60°/60°)

graphite/epoxy substrate integrated with PZT-5A actuator and sensor is considered. The imperfect interface
parameters are taken to be (Dvorak and Zhang, 2001)

M2 :M'; = 108 N/m3, H2 = H3 = @2 = @'; = 109 1\1/1'1'13
The geometric and loading parameters are assumed to be

0,=1rad, m=1.
The inner radius of the shell is taken to be unit, i.e., Ry = 1 m, and the thickness of each piezoelectric or
elastic layer is 0.2 m. Figs. 2-7 illustrate the variations (the solid lines) of u* = u,/ sin(pf), u}; = uy/ cos(pf),
u' =u,/cos(ph), ot = o,/sin(ph), v}, = 1,9/ cos(ph), T = 1,./ cos(pf), all of which are independent of the
angle 0, along the radial direction when the smart cylindrical shell is only subjected to the electric loads
71 =1V and ¢y = 0. The corresponding results (the dashed lines) for perfect interfaces are also presented as
a comparison. It is observed that all the three displacement components undergo jumps when crossing the

2 \. T T T T
19} “\\ PZT-5A T
18— — — — — _\‘;_ _______________ —]
/
17k / graphite/epoxy (60°) .
1]
I
(]
-———f—— - ———————— — — —
'
@ / graphite/epoxy (—60°)
< 151 i .
= 1
we——-4—-4 -———
]
13} ‘," graphite/epoxy (60°) ]
{
"w- - -—-—t4————— - - ]
|
mr | PZT-5A T
1 1 I: 1 1 1 1 1
0 02 0.4 06 08 1 1.2 1.4
. x10°
u, (m)

Fig. 2. Variation of u' along the radial direction under electric loads (solid and dashed lines are for the imperfect and perfect interfaces,

respectively).
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Fig. 3. Variation of u along the radial direction under electric loads (solid and dashed lines are for the imperfect and perfect interfaces,
respectively).

T T T T T T
PZT-5A N
graphite/epoxy (60°) -
—_— — _‘-*:‘-_“‘:-*_:_-_‘ _________ —
graphite/epoxy (-60°) T, 7
Sl
M_—————— ~ — —
\
13F graphite/epoxy (60°) ]
1
1
o —— +—
!
v PZT-5A .
| 1 1 1 1 1 1 1 I
1.8 16 -1.4 1.2 1 0.8 06 0.4 0.2 0
* 10"
u, (m)

Fig. 4. Variation of u} along the radial direction under electric loads (solid and dashed lines are for the imperfect and perfect interfaces,
respectively).

imperfect interfaces separating two elastic layers. Moreover, it has been checked that the jumps in
displacements and the corresponding traction components just satisfy the linear models described by Eq.
(10). It is observed from Fig. 2 that the physically unacceptable interpenetration phenomenon between
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i
——— —
[ .
k) graphite/epoxy (—60°)
N
graphite/epoxy (60°) ]
12— ——— o — —
1E PZT-5A -
\,\._..

1 1 b LT 1 1 1 1 1 1 1

-1 05 0 05 1 15 2 25 3 35 4

o, (N/m?)

Fig. 5. Variation of ¢ along the radial direction under electric loads (solid and dashed lines are for the imperfect and perfect interfaces,
respectively).
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19} PZT-5A
18} — — meamzii
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-
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-
o

1 I ! 1 ! J =" )

-10 -8 -6 -4 -2 0 2 4
b 2
Trf) (N/ m )

Fig. 6. Variation of 7}, along the radial direction under electric loads (solid and dashed lines are for the imperfect and perfect interfaces,
respectively).

neighboring constituents (Achenbach and Zhu, 1990) does not occur when the composite is subjected to
this kind of electric loads. Figs. 5-7 demonstrate that the presence of the imperfect interfaces can relax the
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z,,(N/m?)

Fig. 7. Variation of 7}, along the radial direction under electric loads (solid and dashed lines are for the imperfect and perfect interfaces,
respectively).

17F -

16 —

r (m)

141 B

13F B

W —

-EIAE 0 0.2 0.4 0.6 08 1 1.2
*
¢ (V)
Fig. 8. Variation of ¢" in the sensor and actuator along the radial direction under electric loads (solid and dashed lines are for the
imperfect and perfect interfaces, respectively).

interlaminar stress level. The existence of imperfect interfaces is equivalent to relaxation of interfacial
bonding strength, and hence reduction in the overall rigidity of the shells. Figs. 2-7 confirms that the
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r

Fig. 9. Variation of ¢’ along the radial direction under mechanical loads (solid and dashed lines are for the imperfect and perfect
interfaces, respectively).

r (m)

Fig. 10. Variation of 77, along the radial direction under mechanical loads (solid and dashed lines are for the imperfect and perfect
interfaces, respectively).

existence of imperfect interfaces will cause reductions in interface stresses but at the expense of increases of
the central deflection. Fig. 8 demonstrates the variations of ¢ = ¢/ sin(p0) in the bottom sensor and top



X. Wang, Z. Zhong | International Journal of Solids and Structures 40 (2003) 5901-5921 5919

r (m)

7, (N/m?)

Fig. 11. Variation of 7, along the radial direction under mechanical loads (solid and dashed lines are for the imperfect and perfect
interfaces, respectively).

actuator along the radial direction under the electric loads /; = 1 V and ¢y = 0. The magnitude of electric
potential in the sensor is very small; while the electric potential is nearly a linear function along the radial
direction. The interface imperfection has a minimal influence on electric potential. Figs. 9-11 present the
variations of a7, %), 7%, along the radial direction when the smart laminated shell is under mechanical loads
go =1 N/m? and ¥} = 0. It is observed from Figs. 9-11 that even though the existence of the imperfect
interfaces can significantly reduce the level of normal stress o7 within each layer of the smart laminated
shell, the magnitudes of shear stresses t7, and 7, in the top actuator and in the adjacent elastic layer
for the case of imperfect interfaces are much higher than those for the case of perfect interfaces. Con-
sequently, delamination between the actuator and the layered substrate may occur when the interfaces
between two adjacent elastic layers are imperfect and when the smart laminated shell is subjected to

mechanical loads.

7. Conclusion

Based on the pseudo-Stroh formalism and the transfer matrix method, this paper presents a three-di-
mensional electroelastic solution for angle-ply cylindrical shells with imperfect bonding at the elastic layer
interfaces and with mounted anisotropic piezoelectric layers. The spring-like interface model is utilized here
to simulate the imperfectly bonded interfaces between two adjacent elastic layers. Compact and explicit
form expressions for all of the field quantities including the in-plane stresses and in-plane electric dis-
placements are given. During the formulation, we take ro,, 71,9, 77,. instead of o,, 1,9, 7, as the stress
variables and rD, instead of D, as the electric displacement variable to make the formulation simple and
elegant. This novel usage has also been employed by Tarn (2002a,b) in the analysis of cylindrically an-
isotropic elastic and piezoelectric body.
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Appendix A

Defining
A= diag[sl Sy S3 —851 —S —8 L (Al)

then the 6 x 6 diagonal matrix ((r/R;)™) can be uniquely expressed in terms of A°, A', A%, A°, A* A° as
follows

(r/RO)™) = gl + 1 A + 12 A + 1347 + u A + 15 4°. (A2)
In view of (20) and (40), the following identities can be easily verified
Al A2 m _B;F Ag — N™ —
It follows from (A.2) and (A.3) that
Pi(r/Ri) = 1ol + 1N + 25N + 13N + 1N 4 75N°. (A.4)

The above expression indicates that the field transfer matrix P,(r/R;) can be determined from the real
matrix N, thus the calculation of eigenvectors of (20) can be circumvented.
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